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ABSTRACT 

 
Mixtures Type IV exhibit two heteroazeotropic lines, one at low temperature and the other 
meeting the supercritical range, characterized by the proximity of their critical end points 
(CEPs). Between these CEPs, the liquid phase is homogeneous inside a narrow range of 
temperature. The aim of this work is to analyze interface properties and wetting transitions 
for mixtures Type IV. Interfacial tensions have been calculated by means of the gradient 
theory, applied to binary van der Waals fluids. This approach is able to predict interfacial 
tension and phase equilibrium using a common equation of state (EOS).  
Results show that interfacial properties and wetting conditions are governed by the 
densities and the number of phases involved in equilibrium, an scenario that changes as 
temperature evolves from the low to the high temperature heteroazeotropic line.  
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Introduction 
 
Coexisting bulk fluid phases in thermodynamical equilibrium are connected by an 
interfacial fluid, whose concentration ρ, varies spatially between its bulk fluid phases. 
Figure 1 shows, schematically, the typical patter of ρ as a function of a spatial coordinate z, 
for a liquid in equilibrium with its vapor. For mixtures, the interfacial fluid may be 
enclosed by gas/liquid, liquid/liquid, or gas/liquid/liquid bulk fluids, and its ρ(z) behavior 
is a function of pure fluids and their bulk densities. In fact, ρ(z) may be or not a monotonic 
function, as illustrated in Figure 2. From a practical view point, these kinds of interfaces are 
present in many chemical and environmental processes. For example, interface fluids are 
presented in heat transfer under boiling conditions, generation of tropospheric ozone, liquid 
extraction processes, production of herbicides and pesticides, process of enhanced oil 
recovery, fluids wetting, etc. Therefore, the analysis of interface fluid properties, such as 
interfacial tension and wetting transitions, are the precise piece to understand and design 
these industrial processes. In this context, one of the most successful approaches is the 
square gradient theory of van der Waals [1]. Briefly, the gradient theory (GT) describes a 
continuous evolution of the density of the Helmholtz energy of an inhomogeneous fluid 
along the interface, from which the interfacial concentration profile and interface tension 
can be calculated. It should be noted that the main advantages of the GT approach are the 
facts that the interfacial behavior is described in the same terms than thermodynamical 
equilibrium variables, like temperature, pressure and mole fraction, and that the same 
equation of state (EOS) model can be used to predict both the interfacial behavior and the 
phase equilibrium conditions. As follows from Rowlinson and Widom [1], the topology of 
an interface fluid is governed by the type of fluids and their phase equilibria, therefore 
mixtures with several phase equilibria patterns are adequate candidates to obtain a global 
understanding of interfacial behavior. Following the van Konynenburg and Scott’s work 
[2], mixtures Type IV are an interesting choice due to the fact these mixtures exhibit two 
heteroazeotropic lines (one at low and the other at high temperature) which are 
characterized by their critical end points (CEPs). The main scope of this work is to analyze 
interface properties and wetting transitions for this kind of mixtures in a planar interface. 
Our predictions are based on GT applied to the van der Waals EOS (vdW-EOS) with 
quadratic mixing rule (QMR). The results will be illustrated considering the behavior of the 
spatial variation of the fluid concentrations along the interface length and the dependence 
of the interfacial tension on equilibrium conditions.   
 
Theory 
 
The square gradient theory for planar interfaces 
 
The gradient theory (GT) was originally developed by van der Waals in 1894 and 
reformulated later by Cahn and Hilliard in 1958 [3]. In this approach, the interfacial tension 
between two bulk phases (α, β) is related to the interface length by the following equation 
[1] :  
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where σ is the interfacial tension, P0 is the bulk equilibrium pressure, z is a coordinate 
normal to the interface. The integral limits describe the boundary conditions of fluid 
phases, i.e ρi (z = +∞) = ρi

α and ρi (z = − ∞) = ρi
β where ρi

α,β corresponds to the molar 
concentration of component i in the α and β bulk phases, respectively. Finally, Φ is the 
grand thermodynamic potential, which is defined as: 
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In Eq. 2 ρm is concentration of the mixture which is related to the concentration of species, 
ρi,  and the mole fraction xi by ρi = xi ρm. nc stands for the number of components. V0, T0, 
ρi

0 are the equilibrium volume, temperature and concentration of component i, respectively. 
a0 is the density of the Helmholtz energy of the homogeneous system (a0 = A/V) and µi

0 is 
the chemical potential of component i at equilibrium. Both a0 and µi

0 can be determined 
directly from any EOS. In Appendix, we summarize these expressions for the vdW-EOS 
with QMR. An important feature of the Φ function, as stated by Rowlinson and Widom [1], 
is that the ∆Φ vs. ρm projection allows to establish if the phase equilibria exhibits stable 
phases (absolute minimums) or metastable phases (relative minimums). An example of 
absolute and relative minimums at ∆Φ - ρm projection can be observed in Figure 3.  
Replacing Eq. 2 in 1 reveals that the integration processes needs an additional relation 
between ρi and z. Following the GT, this relation is given by the following set of partial 
differential equations (PDE) [6] : 
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where cij is the cross influence parameter (cij = cji). Theoretically, cij is related to the mean 
square range of the direct correlation function of an homogeneous fluid. cij is given by [7] 
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In this expression κ is the Boltzmann's constant, Nav is the Avogadro's constant, s is a 
characteristic coordinate between species i and j, and co

ij (s ;ρ) is the two body direct 
correlation function between species i and j in homogeneous fluids. However, since co

ij 
(s ;ρ) is intractable, some approximation has been applied [6]. One of the most successful 
approximation is co

ij (s) [8], which automatically transforms the PDEs to a set of ordinary 
differential equations (ODEs). Based on co

ij's approximation, cij for pure fluids is given by 
[8]: 
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where u is the intermolecular potential and g is the radial distribution function. For the 
fluids studied here (vdW fluids), the Sutherland potential is used for u, and g is taken as a 
step function. u and g are given by: 
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εii and σii represent length and energy parameters characteristic of molecular interactions of 
specie i. Replacing Eqs. 6 in 5 and integrating over V, cii takes the form: 
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Following Carey's work, Eq. 7 can be conveniently rewritten in terms to aii and bii as 
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For the case of mixtures, cij can be obtained by averaging the pure component influence 
parameters according to the following geometric combining rule [6] 
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where χij is an adjustable parameter, obtained by fitting experimental data of σ for 
mixtures. However, as some authors have been shown [6, 9], selected χij = 0 is a good 
choice for several fluid/fluid interfaces. The advantages of χij = 0 are that cij can be 
predicted from pure fluids information, and the ODEs become to the following system of 
algebraic equations (AEs) [6]: 
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These AEs can be solved by setting a value of ρs and calculating the ρk values. Once  ρk 
(ρs) have been determined, the ρk (z) projections are calculated from the ODEs, which after 
some algebra yields to [6,9] : 
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where z0 is a reference of z coordinate, where ρ = ρs

0. Some patterns of ρk (z) projections 
were shown for pure fluids and mixtures in Figures 1 and 2, respectively. Eq. 11 also brings 
the possibility to express σ in terms to ρ rather than z. Replacing it in Eq. 1, σ (ρ) is given 
by : 
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The latter transformation is useful to understand the σ behavior near to critical states, and 
the wetting transition of interface fluids, as we will describe in the following section. It is 
well known that when two phases (α, β) are approaching to their critical state ρα ≈ ρβ, 
therefore Eq. 12 produces σ → 0. For the case to three phases (α, β, γ), with ρα ≠ ρβ ≠ ργ 
along to αβγE, interfacial tensions are deferments σαβ ≠ σαγ ≠ σβγ but near to a CEP ρα ≠ ρβ 
≈ ργ which conduces to σαβ ≈ σαγ and σβγ → 0. 
 
Wetting transitions at fluid interfaces 
 
Considering Figure 3 and following the structure of Eq. 12, we can conclude that the area 
below two bulk phases is proportional to σ, and in general when π different phases are in 
equilibrium, [½ (π – 1) π] independent σs can be formed and are interrelated via their 
contact angles [1]. For the cases studied here two (α, β) and three (α, β, γ) phases in 
equilibrium, consequently we have one (σαβ) or three (σαβ, σαγ, σβγ) different interfacial 
tensions, respectively. In the later case, σs are interrelated by [1] : 
 

αβ αγ βγσ < σ + σ  Neumman inequality (13.a)

αβ αγ βγσ = σ + σ  Antonow rule (13.b)
 
and cyclic permutation of α, β, and γ. The situation described by Eq. 13.a is called partial 
wetting of γ phase in αβ interface. Eq. 13.b denotes the total wetting of the γ phase in αβ 
interface, and the transition from partial to total wetting (or vice versa) is called Wetting 



transition [1], which can occur at certain point along to three phase equilibrium (αβγE) 
line. The evolution of σαβ along to αβγE is schematically illustrated in Figure 4.  
 
Results and Discussion 
 
Based on the Global Phase Equilibria for the vdW-EOS [2], we select a typical mixture 
Type IV. Table I summarizes the critical properties of pure components and the interaction 
parameter for this mixture. Figure 5 illustrates its pressure – temperature diagram, which 
exhibits three critical lines, and two heteroazeotropic lines, as expected. Specific details 
related to the Type IV and its construction can be found in Konynenburg and Scott [2] and 
Rowlinson and Swinton [10]. In order to describe the interfacial behavior related to Figure 
5, we need to consider the topological evolution of  interfacial projections (i.e ∆Φ – ρm, ρ – 
z, and σ – P, x) in the subcritical phase equilibriums related to this Type. Using the 
temperature as a variable we are able to collect all subcritical equilibriums in four zones. 
Table II summarizes these zones, their temperature ranges and the isothermal conditions 
which will be used to analyze the interfacial behavior. 
In the approximation presented here, all interfacial calculations were performed using        
χ = 0. The advantage of χ = 0 is that GT acquires a predictive character without a lost of 
generality [11, 12]. Details related to the interfacial calculations are summarized in Figure 
6. However, it is important to establish that for cases where χ ∈ (0; 1) and nc > 2 more 
sophisticated algorithms need to be considered [6, 9]. 
In the following section we describe the interfacial topology in terms to the interfacial 
projections in the whole mole fraction range. We divide our analysis in two sections, one is 
related to the variation of the interfacial projections for each zone of Type IV mixture (see 
Table II) and the other is consider wetting transitions along the two heteroazeotropic lines. 
 
 
Evolution of interface properties with the temperature.  
 
Figures 7 depict the behavior of the ∆Φ – ρm profile at the four zones for the whole mole 
fraction range. From these figures, we can observe that each isothermal projection displays 
only two absolute minimums for a fixed mole fraction. This fact confirms that two bulk 
fluid phases (GL or LL) are present at the temperature for which the fluid/fluid equilibria 
has been calculated, as we can expect from the theory and Table II. Additionally, Figures 7 
also show some relative minimums near to CEPs which are due to the fact that an embryo 
phase (γ) is present. As is expected, the position and magnitude of γ changes as T or xi 
changes. For example, for an isothermal condition, γ changes from an embryo state to an 
equilibria state (see Figure 7.a, c) as xi increases. At a fixed xi, the density of γ may changes 
from liquid like to gas like densities as T increases. In additions, from the theory 
arguments, we can anticipate, from ∆Φ – ρm diagrams, that no always σGL is greater than 
σLL. The σ value depends on the thermomecanics conditions at which the equilibrium is 
calculated.  



Figures 8 illustrate the concentration of species along the interface length. These ρ – z 
projections were calculated at the same thermodynamical conditions than Figure 7. 
Inspections on these diagrams revels that the more volatile component (1) always shows a 
stationary point (SP), where its concentration is larger than the bulk concentration. This 
fact reflects that (1) is positively absorbed at the interface. Moreover, the less volatile 
component (2) is not absorbed. From these Figures we can observe that the position and 
magnitude of SPs changes as T or xi changes. In fact, we can conclude that both position 
and magnitude of SPs increases as xi increases. For a fixed xi, the position of SPs increases 
and the magnitude decreases as T increases. Figures 8 also show that LL interfaces exhibit 
smoother profiles and larger interface widths than GL interfaces. This behavior is caused, 
mainly, by the bulk concentration gradient in a LLE and in a GLE. Finally, when previous 
patterns are compared with computer simulations [13] we can conclude that ρ – z, from 
GT, shows a good qualitative agreement to that simulations for LL and GL interfaces.  
Figures 9 show the σ - P projections at the same isothermal conditions considering in 
Figures 7 and 8. As expected from Table II, one or three interfacial tensions (σGL or σGL1 
σL1L2 σGL2) are presented in these σ (P) diagrams. A quick inspection of each isothermal σ - 
P diagram revels that, in general, σ decreases as the phase equilibrium tends to the critical 
point, as expected from Eq. 12. However a close view shows that σ may be increased in 
regions where the γ phase is presented. The σ (P) behavior can be summarized as follows : 
σ is not a continuous function in zones 1 and 3, its discontinuity is due to the fact that three 
equilibria condition are present into these zones (see Table II). In particular, zone 1 shows 
that σGL1, GL2 > σL1L2. zone 3 shows two regimes as the temperature increases. From   
TLCEP2 / Tc1 to T / Tc1 = 1, σ (P) is similar than zone 1. From T / Tc1 = 1 to TUCEP2 / Tc1 σGL1 
> σL1L2 > σGL2. For zones 2 and 4 σ is a continuous function of P, however its trend is 
affected by the presence of the γ phase. In order to complete the σ descriptions in zones 1 
to 4, Figures 10 collect the evolution of the interfacial tension on mole fraction σ (x). From 
these Figures we can observe similar patterns discussed previously. Regrettably, no 
experimental information are available to contrast our σ (P, x) predictions. However, we 
can observe that our description reflects the facts to their phase diagrams, and following the 
same patters observed by other authors [9] 
 
Wetting transitions along to three phase equilibria 
 
Figures 11 show the σ – T projections along to the two three phase equilibria for the 
mixture Type IV, and Table III summarizes its behavior as temperature increases. From 
Table III, we can establish that at a CEP three phase equilibria converges, simultaneously, 
to one subcritical equilibria and one critical equilibria. These interfacial tension results 
agree to the phase description from van Konynenburg and Scott. In addition, from these 
Figures and Eqs. 13, we can conclude that along to [GLL]1 line, wetting transitions never 
occur. But along to [GLL]2, σGL2 = σGL1 + σL2L1 at T / Tc1 = Tw / Tc1 = 0.9153, and 
therefore, the [GLL]2 line exhibits a wetting transition. Physically, this transition means 
that of the GL2 interface, a layer of a second liquid phase (L1) intrudes between G and L2 
phases. In complement, it is important to state that ∆Φ(ρm) and ρ(z) show the expected 



behavior of a three phase equilibrium (see Figures 2 and 3). These behavior reinforce the 
phase and interface patterns previously described. 
 
Concluding Remarks 
 
In this work we analyze interfacial properties and wetting transitions for mixtures Type IV 
using the GT and the vdW-EOS with QMR. The advantage of this approach is that a 
common EOS can be used to predict phase equilibrium as well as interfacial properties. 
This advantage bring the possibility to explain the phase equilibria and its stability from the 
interfacial behavior. According to results, interfacial properties and wetting conditions are 
governed by the densities and the number of phases involved in equilibrium, an scenario 
that changes as temperature evolves from the low to the high temperature heteroazeotropic 
line. 
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Table I. Critical properties of pure components and interaction parameter 
 
 

Tc2 / Tc1 Pc2 / Pc1 k12 
3.9692 6.1429 -0.3655 



Table II. Classification of subcritical phase equilibria, and isothermal conditions for 
the interfacial analyze. 
 
Zone Temperature Range (T/Tc1) Equilibria Type Selected Temperature (T/T c1)

1 0 to 0.7966 (TUCEP1) GL1, GL2, L1L2 0.78 

2 0.7966 to 0.8457 (TLCEP2) GL 0.82 

3 0.8457 to 1.0549 (TUCEP2) GL1, GL2, L1L2 0.95 

4 1.0549 to 3.9692 (Tc2) GL 1.10 

 



Table III. Interfacial tension behavior along three phase equilibria for mixture Type 

IV 

 
 

[GLL]1 

Temperature Range Phase Equilibria Type Interfacial tension behavior 

 

T  < TUCEP1 

subcritical equilibria 

GL1,  L1L2 

GL2 

 

σ decreases as T increases 

σ increases as T increases 

 

T = TUCEP1 

subcritical equilibria 

GL1= GL2 

critical equilibria 

L1L2 

 

σGL1 = σGL2 ≠ 0 

 

σL1L2 = 0 

 
[GLL]2 

Temperature Range Phase Equilibria Type Interfacial tension behavior 

 

T = TLCEP2 

subcritical equilibria 

GL1 = GL2 

critical equilibria 

L1L2 

 

σGL1 = σGL2 ≠ 0 

 

σL1L2 = 0 

TLCEP2< T < TUCEP2 subcritical equilibria 

GL1, GL2, L1L2 

 

 

σGL1 first decreases and then 

increases, σL1L2 decreases 

and σGL2 increases as T 

increases 

T = TUCEP2  subcritical equilibria 

GL1= L1L2 

critical equilibria  

GL2E 

 

σGL1 = σL1L2 ≠ 0 

 

σGL2 = 0 



Appendix. Density of the Helmholtz energy of the homogeneous system (ao) and 
chemical potential of component i (µi

0) from van der Waals equation of state. 
 
The van der Waals equation of state (vdw-EOS) is given, in terms to P(T,ρ), by : 
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ρ
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where R is the gas constant, a is the cohesion parameter and b is the covolume that, for pure 
fluids, are given by the following expressions [4] : 
 

( )2
c,i c,i2 3 3

ii av ii ii ii av ii
c,i c,i

RT RT27 2 1 2a N ; b N
64 P 3 8 P 3

= = πε σ = = πσ  
(A.2)

 
Nav is the Avogadro constant, Pc,i and Tc,i are the critical pressure and the critical 
temperature for component i. εii and σii represent length and energy parameters 
characteristic of molecular interactions of specie i. Eqs. A.2 are extended to mixtures using 
the QMR. a and b of the mixture are given by :  
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where kij is the interaction parameter. a0 and µi

0 can be calculate by used the following 
relations [4,5] : 
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For the case of the vdW-EOS applied to a multi-component fluid, Eqs. A.4 conducted to : 
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where Pref is some freely chosen reference pressure. 



Figure Captions  
 
[1] Schematically representation of ρ – z projection for a planar vapor/liquid interface 

of a pure fluid at the boiling point. (æ) VLE bulk densities. 
 

[2] Typical ρ – z projections for mixture. () GL1E, (− − −) GL1E with adsorption 
of species on the interfacial zone, (–•–) L1L2E, (–••–) GL1L2E, (æ) liquid bulk 
density, ( ) vapor bulk density. 
 

[3] Usual ∆Φ – ρm projections at fluid phase equilibria. () αβE, (–•–) αβE with an 
embryo phase, γ, (–••–) αβγE, (æ) absolute minimums (stable phases bulk 
densities), ( ) relative minimums (metastable phases). 
 

[4] Schematically representation of Wetting transition along three phase 
equilibria. α, β, γ phases. (–•–) three phase equilibria (αβγE), (æ) CEP (critical 
end point), ( ) wp (wetting point) 
 

[5] Pressure – Temperature diagram for mixture Type IV. () critical line,  
(•••) vapor pressure, (–••–) GLLE 
 

[6] Block diagram for algorithm calculations 
 

[7] ∆Φ – ρm projections at several isothermal conditions. () x1 = 0.25, 
(–•–) x1 = 0.50, (–••–) x1 = 0.75, (æ) VLE bulk densities. 
 

[8] ρ – z projections at several isothermal conditions. (–•–) ρ1, (–••–) ρ2, (æ) VLE 
bulk densities, ( ) stationary points (sp) 
 

[9] σ – P diagrams at several isothermal conditions. (æ) end points 
 

[10] σ – x diagrams at several isothermal conditions. (æ) end points 
 

[11] σ – T diagrams along [GLL]1 and [GLL]2 
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